The continuos stirred-tank reactor

The continuous stirred-tank reactor (CSTR), also known as vat- or backmix reactor, is a common ideal reactor type in chemical engineering. A CSTR often refers to a model is used to estimate the key unit operation variables when using a continuous[†] agitated-tank reactor to reach a specified output. The mathematical model works for all fluids: liquids, gases, and slurries.
The behavior of a CSTR is often approximated or modeled by that of a Continuous Ideally Stirred-Tank Reactor (CISTR). All calculations performed with CISTRs assume perfect mixing. If the residence time is 5-10 times the mixing time, this approximation is valid for engineering purposes. The CISTR model is often used to simplify engineering calculations and can be used to describe research reactors. In practice it can only be approached, in particular in industrial size reactors.
Integral mass balance on number of moles Ni of species i in a reactor of volume V.
[accumulation] = [in] - [out] + [generation]

where Fio is the molar flow rate inlet of species i, Fi the molar flow rate outlet, and νi stoichiometric coefficient. The reaction rate, r, is generally dependent on the reactant concentation and the rate constant (k). The rate constant can be figured by using the Arrhenius temperature dependence. Generally, as the temperature increases so does the rate at which the reaction occurs. Residence time, τ, is the average amount of time a discrete quantity of reagent spends inside the tank.
Assume:
constant density (valid for most liquids; valid for gases only if there is no net change in the number of moles or drastic temperature change)
isothermal conditions, or constant temperature (k is constant)
steady state
single, irreversible reaction (νA = -1)
first-order reaction (r = kCA)
A → products
NA = CA V (where CA is the concentration of species A, V is the volume of the reactor, NA is the number of moles of species
The values of the variables, outlet concentration and residence time, in Equation 2 are major design criteria.
To model systems that do not obey the assumptions of constant temperature and a single reaction, additional dependent variables must be considered. If the system is considered to be in unsteady-state, a differential equation or a system of coupled differential equations must be solved.
CSTR's are known to be one of the systems which exhibit complex behavior such as steady-state multiplicity, limit cycles and chaos

Shear stress

Shear stress is a stress state where the stress is parallel or tangential to a face of the material, as opposed to normal stress when the stress is perpendicular to the face. The variable used to denote shear stress is (tau).
Physical quantities of shear stress are measured in force divided by area. In SI, the unit is the pascal (Pa) or newtons per square meter. In United States customary units, shear stress is also commonly measured in pounds-force per square inch (psi) or kilopounds-force per square inch (ksi). The area is always the area resisting the shear, and not the area that the force is acting on. These two areas are always at right angles.

Cell Culture

Cell culture is the process by which prokaryotic, eukaryotic or plant cells are grown under controlled conditions. In practice the term "cell culture" has come to refer to the culturing of cells derived from multicellular eukaryotes, especially animal cells. The historical development and methods of cell culture are closely interrelated to those of tissue culture and organ culture.
Animal cell culture became a routine laboratory technique in the 1950s, but the concept of maintaining live cell lines separated from their original tissue source was discovered in the 19th century.

Chemical Reaction

A chemical reaction is a process that always results in the interconversion of chemical substancesThe substance or substances initially involved in a chemical reaction are called reactants. Chemical reactions are usually characterized by a chemical change, and they yield one or more products which are, in general, different from the reactants. Classically, chemical reactions encompass changes that strictly involve the motion of electrons in the forming and breaking of chemical bonds, although the general concept of a chemical reaction, in particular the notion of a chemical equation, is applicable to transformations of elementary particles, as well as nuclear reactions.
Different chemical reactions are used in combinations in chemical synthesis in order to get a desired product. In biochemistry, series of chemical reactions catalyzed by enzymes form metabolic pathways, by which syntheses and decompositions ordinarily impossible in conditions within a cell are performed.

Sensors

A sensor is a device which measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument. For for sensors of which most people are never aware. Applications include automobiles, machinexample, a mercury thermometer converts the measured temperature into expansion and contraction of a liquid which can be read on a calibrated glass tube. A thermocouple converts temperature to an output voltage which can be read by a voltmeter. For accuracy, all sensors need to be calibrated against known standards.
Sensors are used in everyday objects such as touch-sensitive elevator buttons and lamps which dim or brighten by touching the base. There are also innumerable applications es, aerospace, medicine, industry, and robotics.
A sensor's sensitivity indicates how much the sensor's output changes when the measured quantity changes. For instance, if the mercury in a thermometer moves 1cm when the temperature changes by 1°, the sensitivity is 1cm/1°. Sensors that measure very small changes must have very high sensitivities.
Technological progress allows more and more sensors to be manufactured on a microscopic scale as microsensors using MEMS technology. In most cases, a microsensor reaches a significantly higher speed and sensitivity compared with macroscopic approaches. See also MEMS sensor generations.